Ultra cutter

Chamfering Series

Body

						Dir	mensions(mm)				
Model. No.	Blades	φD	<i>ф</i> Ds	ødn	ødc	ød	L	ls	٤n	S	SI	۵°
NEW WNK4525S	*2	26	19.4	27	16	32	146~188	100	46~88	3.3	10.8	45°
NEW) WNK4525S-U	1				/		132.8	\backslash	32.8	\sim	\sim	
NEW WNK4525S-L	1						108	\square				

 $\ensuremath{\mathbbmm}$ Insert is not equipped as standard accessory. Please purchase it spearately.

 $\ensuremath{\ll}$ Clamp screw Set screw wrench we have standard equipment.

 $\ensuremath{\ll}$ UPPER and LOWER each have 1 blade

Staggered **2**Blade

1. Align the scale of the intermediate shaft with the thickness of the work material and fix it with two Set screws

2. Insert the insert into the holder and set it on the processing machine

3. The tip of the holder protrudes from the bottom of the workpiece by the amount of OFFSET

4. Rotate the holder to start chamfering

%Make ΦD1 / 2-C be the actual tool path

%The place where the center of the holder deviates Φ D1 / 2 from the work material becomes C0

Cutting Conditions

SPEW040102											
	Material Model	ZA10N	AC16N								
Material	Feed per blade (fz)	Feed per blade (fz) Cutting speed (m / min)									
General Steel	0.08~0.2		100~200								
Alloy Steel	0.08~0.2		100~200								
Stainless Steel	0.08~0.2		100~200								
Aluminum,Resin,Brass	0.08~0.3	250~800									
Castings	0.08~0.3		100~200								

According to the shape of work, large or small chamfering, amount and position of blade. In case of process with large amount chamfer, please take reducing cutting condition

In case of chamfering process of stainless steel, Alminum, please take the down cutting

 $\fbox \\ \textbf{When the workpiece thickness is as large as 25 mm to 50 mm} \\ \textbf{Reduce the chamfering amount to C2 and reduce the condition by 2/1.}$

Insert

Figure	Model.No.	Material	Blade Shape	Coating	Usable corner	Quantity per box
(SPEW040102) R0.2	NEW SPEW040102 ZA10N	Carbide K10	Sharp edge	None	4	12
4.4 1.588 (Except nose R) 1.588	NEW SPEW040102 AC16N	Fine particles Carbide	Honing edge	AICrN	4	12

% Can chamfer a hole larger than $\Phi26$

Ultra cutter

Chamfering Series

Staggered 4_{Blade}

Cutting Conditions

T32MOR								TT32GURF			
	Material Madel	NU/20001	NIK1010	NUCODOD	NUC2020	A 010N		Material Model	TC16N		
	Material Model	INK2001	INKTUTU	NK2020	NK3030	ACTON	Material	Feed per blade (fz)	Cutting speed (m / min)		
Material	Feed PerBlade (fz)		Cutti	ng speed (m /	′ min)		heat resistant alloy	0.02~0.05	150~200		
General Steel	0.08~0.2	200~250		150~200	150~200	100~200	(Inconel)	0.02 0.03	130 200		
	0.00 0.2	200 200		100 200	100 200	100 200	titanium alloy	0.02~0.05	150~200		
Allov Steel	0.08~0.2	200~250		150~200	150~200	100~200					
							TNEA160304				
Stainless Steel	0.08~0.2			100~150	100~150	100~200		Material Model	TC16N		
							Material	Feed per blade (fz)	Cutting speed (m / min)		
Aluminum,Resin,Brass							Hardened alloy steel	Teeu per biaue (12)			
Castings	0.08~0.2	200~250	100~150				SKD/HSS	0.08~0.2	150~200		
ouotingo	0.00 0.2	*FCD	100 100				(HRC50~65)				

					I 132GUR								
	Material Model	NK2001	NK1010	NK2020	NK3030	NK5050	NK8080	AC15N	HSS	HSS TIN			
Material	Feed PerBlade (fz)		Cutting speed (m / min)										
General Steel	0.08~0.2	200~250		150~200	150~200			150~200	13~23	15~25			
Alloy Steel	0.08~0.2	200~250		150~200	150~200			150~200	10~20	13~22			
Stainless Steel	0.08~0.2			120~180	150~200	120~180	150~200 *SUS316	150~200	10~15	11~17			
Aluminum,Resin,Brass	0.08~0.3		250~800			250~800	300~1,000		31~40	31~47			
Castings	0.08~0.3	200~250 %FCD											

According to the shape of work, large or small chamfering, amount and position of blade, the cutting condition will have to be adjusted.

In case of chamfering condition will have to be adjusted. You have been to the workpiece by recommended Inset. In case of chamfering process of stainless steel, please take the down cutting

Insert

Figure	Model.No.	Material	Blade Shape	Coating	Usable corner	Quantity per box
60°2 (T32MOR)	T32MOR NK2001	Cermet	Honing edge	None	6	12
	T32MOR NK1010	Carbide K10	Sharp edge	None	6	12
R0.4	T32MOR NK2020	Carbide M20	Honing edge	None	6	12
Et com	T32MOR NK3030	Carbide M20	Honing edge	TiN	6	12
φ9.525 3.18	T32MOR AC16N	Fine particles Carbide	Honing edge	AlCrN	6	12
	TT32GUR NK2001	Cermet	Honing edge	None	2	12
TT32GUR	TT32GUR NK1010	Carbide K10	Sharp edge	None	2	12
60°	TT32GUR NK2020	Carbide M20	Honing edge	None	2	12
	TT32GUR NK3030	Carbide M20	Honing edge	TiN	2	12
	TT32GUR NK5050	Carbide K10	Sharp edge	TiN	2	12
R0.4	TT32GUR NK8080	Carbide K10	Sharp edge	TiAℓN	2	12
	TT32GUR AC15N	Fine particles Carbide	Honing edge	AICrN	2	12
	TT32GURF TC16N	Fine particles Carbide	Sharp edge	TiSiN	2	12
φ9.525 3.18	TT32GUR HSS	HSS	Sharp edge	None	2	12
	TT32GUR HSS TiN	HSS	Sharp edge	TiN	2	12
(TNEA160304) B0.4 09.525 09.525 0.18	TNEA160304 TC16N	Fine particles Carbide	Honing edge	TiSiN	6	12